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Abstract. We make a new proposal to describe the very low temperature susceptibility of the doped
Haldane gap compound Y2BaNi1−xZnxO5. We propose a new mean field model relevant for this compound.
The ground state of this mean field model is unconventional because antiferromagnetism coexists with
random dimers. We present new susceptibility experiments at very low temperature. We obtain a Curie-
Weiss susceptibility χ(T ) ∼ C/(Θ + T ) as expected for antiferromagnetic correlations but we do not
obtain a direct signature of antiferromagnetic long range order. We explain how to obtain the “impurity”
susceptibility χimp(T ) by subtracting the Haldane gap contribution to the total susceptibility. In the
temperature range [1 K, 300 K] the experimental data are well fitted by Tχimp(T ) = Cimp (1 + Timp/T )−γ .
In the temperature range [100 mK, 1 K] the experimental data are well fitted by Tχimp(T ) = A ln (T/Tc),
where Tc increases with x. This fit suggests the existence of a finite Néel temperature which is however too
small to be probed directly in our experiments. We also obtain a maximum in the temperature dependence
of the ac-susceptibility χ′(T ) which suggests the existence of antiferromagnetic correlations at very low
temperature.

PACS. 75.10.Jm Quantized spin models – 75.40.Cx Static properties (order parameter, static susceptibil-
ity, heat capacities, critical exponents, etc.) – 75.50.Ee Antiferromagnetics

1 Introduction

Disordered low dimensional spin systems are currently
the focus of both experimental and theoretical interest. A
very powerful theoretical technique used to describe these
systems consists in iterating a real space renormalization
group (RG) in which high energy degrees of freedom are
progressively frozen out. The cluster RG was initially pro-
posed by Dasgupta an Ma in the early 80’s [1] and applied
soon after by Bhatt and Lee to a three dimensional (3D)
model intended to describe Si:P [2]. In a series of articles,
Fisher applied the cluster RG to disordered 1D antiferro-
magnets, including the random Ising chain in a transverse
magnetic field and the random antiferromagnetic spin-1/2
chain [3]. In these models, the cluster RG is so powerful
that it allows to obtain exact results regarding two as-
pects of the problem: (i) the correlation functions associ-
ated with the approach of a random singlet fixed point;
and (ii) the approach of a quantum critical point. It is
fair to say that there exists now a detailed theoretical
understanding of all random spin models in one dimen-
sion [4–7], and even in higher dimensions [8]. Some mod-
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els do not have a quantum critical point [3,7] while other
models have a zero temperature phase transition which
is controlled by the strength of disorder [3–6]. In particu-
lar, weak disorder is irrelevant in the random spin-1 chain
but there is a quantum critical point at a critical disor-
der dc. For d > dc, the random spin-1 chain behaves like
a random singlet [5,6], namely, the strength of disorder
increases indefinitely as the temperature is scaled down,
which is known as an “infinite randomness” behavior [8].

On the experimental side, it has become possible to
fabricate low dimensional oxides in the last five years,
and dope them in a well controlled fashion. As a con-
sequence, these systems give the unique opportunity of
exploring the introduction of disorder in a spin gap state.
It would be erroneous however to think that there exists
a straightforward relation between these experiments on
quasi one dimensional oxides and the 1D models that have
been widely studied by theoreticians in which the disor-
der is introduced in the form of random bonds. In fact, the
1D models with random bonds are not directly applica-
ble to experiments. The reason is that the relevant models
should incorporate the following realistic constraints:

(i) Doping in quasi one dimensional oxides is introduced
by substitutions, and not in the form of random
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exchanges. The usual random bond models are not the
most relevant ones.

(ii) The temperature is finite in the experiments, even
though often very small.

(iii) The realistic systems are not 1D. Interchain couplings
become relevant at low temperature and can change
the physics drastically.

The problem is then to determine to what extent realistic
models incorporating these three constraints still behave
like the original 1D random bond models.

One of the recently discovered low dimensional ox-
ides is CuGeO3 [9] which has a spin-Peierls transition
at TSP ' 14 K below which the CuO2 chains dimer-
ize with the appearance of a gap in the spin excitation
spectrum. Soon after the discovery experimentalists be-
gan to study the effects of various substitutions on this
inorganic compound. For instance, it is possible to sub-
stitute a small fraction of the Cu sites (being a spin-1/2
ion) by Ni (being a spin-1 ion) [10] or Co (being a spin-
3/2 ion) [11]. It is possible to substitute Cu by the non
magnetic ions Zn [12–14] or Mg [15]. It is also possible to
substitute some Ge sites (being outside the CuO2 chains)
with Si [16]. The general feature emerging from the de-
tailed experimental studies of the various substitutions is
the existence of antiferromagnetism at low temperature.
It has even been shown experimentally by Manabe et al.
that at low doping concentrations, the Néel temperature
behaves like lnTN ∼ 1/x [17], therefore suggesting that
there is no critical concentration associated with the on-
set of antiferromagnetism.

The Haldane gap is another example of a spin gap in a
low dimensional antiferromagnet [18]. Two inorganic Hal-
dane gap antiferromagnets have been discovered recently:
PbNi2V2O8 which has a spin gap ∆ ' 28 K [19], and
Y2BaNiO5 which has a spin gap ∆ ' 100 K [20]. The
substitution of the spin-1 Ni sites of PbNi2V2O8 with Mg
(a non magnetic ion) generates long range antiferromag-
netism at low temperature. The situation with Y2BaNiO5

is not so well established. Previous works have failed to
find long range antiferromagnetic order at low temper-
ature [21–24]. In particular µSR experiments at 50 mK
in reference [23] have reported a paramagnetic relaxation
with a Mg doping of 1.7% and 4.1%. We report here a
study of the effect of Zn substitutions in Y2BaNiO5. In
agreement with reference [23], we do not find antiferro-
magnetic long range order down to 100 mK. But from the
analysis of the experimental ac- and dc-susceptibility we
deduce the existence of 3D antiferromagnetic correlations
which rule out the “1D quantum criticality” scenario rep-
resented in Figure 1a.

There have been several attempts to find a theoreti-
cal description of doped spin-Peierls systems. Fukuyama,
et al. have made the first proposal [25]. Another route
has been followed by Fabrizio, et al.. In a series of article
[26–28], these authors have provided a detailed scenario for
disordered antiferromagnetism. Appealing aspects of their
approach is that the doped spin-Peierls and the doped
Haldane gap systems can be described in the same frame-
work [28], and the model appears to be fully compatible
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Fig. 1. Two possible scenarii for Y2BaNi1−xZnxO5. In (a)
there are no interchain couplings (J⊥ = 0) and the physics
is governed by the approach to the quantum critical point of
the disordered Haldane gap chain. A power-law susceptibil-
ity is expected in this situation at low temperature (Griffiths
behavior). In (b) interchain couplings play a relevant role and
generate an unconventional phase in which antiferromagnetism
coexists with random dimers. The approach to the Néel tran-
sition is controlled by the establishment of antiferromagnetic
correlations. The purpose of the article is to show that the
situation (b) can apply to Y2BaNi1−xZnxO5.

with experiments. The relevant physics is determined by
comparing two energy scales:

(i) The coherence temperature T ∗ = ∆ exp [−1/(xξ)]
which controls the formation of singlet correlations.

(ii) The Stoner temperature TStoner = J⊥xξ which controls
the formation of 3D antiferromagnetic correlations.

In these expressions, x is the doping concentration, ∆
is the spin gap, ξ is the correlation length of the pure
gaped system, and J⊥ is the interchain coupling. The
specificity of Y2BaNi1−xZnxO5 is that T ∗ > TStoner while
T ∗ � TStoner in Cu1−xZnxGeO3 and Pb(Ni1−xMgx)V2O8

(see Refs. [26,28]). As a consequence in Y2BaNi1−xZnxO5,
3D antiferromagnetic correlations coexist with non mag-
netic random dimer correlations (see Fig. 1b). Based on
the calculation of the exchange coupling two spin-1/2 mo-
ments associated to the same impurity presented in ref-
erence [29], we propose a mean field model relevant for
Y2BaNi1−xZnxO5. From this mean field model we can
obtain new insights in the nature of the low temperature
phase, and compare the model to very low temperature
susceptibility experiments.

The article is organized as follows. The model is
presented in Section 2. Section 3 is devoted to calcu-
late the susceptibility and discuss the nature of the low
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Fig. 2. Schematic representation of two non magnetic impuri-
ties inserted in a spin-1 chain. The thick arrows are the spin-1
moments. The thin arrows are the “edge” spin-1/2 moments.
The exchange coupling the two spins S1 and S2 is given by (1)
and (2). We have represented an even segment. The exchange
between S1 and S2 is therefore antiferromagnetic.

temperature phase. In Section 4 we present and analyze
the very low temperature susceptibility experiments. Con-
cluding remarks are given in Section 5.

2 The model

2.1 Defects in spin-Peierls and Haldane gap systems

The model that should be used to describe doped Hal-
dane gap compounds is well established. The introduction
of a non-magnetic impurity in a spin-1 chain generates
a pair of “edge” spin-1/2 moments on either side of the
impurity [30–33] (see Fig. 2). The spin-1/2 moments asso-
ciated with two neighboring impurities interact with the
Hamiltonian

H = J(l)S1 · S2, (1)

where the exchange is ferromagnetic for odd segments (S1

and S2 are in the same sublattice), and antiferromagnetic
for even segments (S1 and S2 are in a different sublattice):

J(l) = (−)l∆ exp
(
− l
ξ

)
, (2)

where ξ is the correlation length associated to the Haldane
gap. We note J2 the ferromagnetic exchange coupling be-
tween two spins associated with the same impurity. Quan-
tum chemistry calculations indicate that J2 is smaller than
the interchain coupling J⊥ in Y2BaNi1−xZnxO5 [29]. The
authors of reference [29] have obtained J⊥ ' 0.2− 0.9 K
and J2 < 0.1 K. This means that there is no tempera-
ture range in which the effective low energy model can be
considered as one dimensional. On the contrary, when T
is above J2 ∼ J⊥ the system can be represented by a
model having J2 = J⊥ = 0. When T is below J2 ∼ J⊥ the
system develops directly three-dimensional correlations.
As a consequence we will use a model with J2 = 0 but
with finite interchain correlations that will be treated in
mean field. We note that the role of interchain correlations
was already pointed out in reference [24]. On the basis of
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Fig. 3. Schematic representation of two non magnetic im-
purities inserted in a spin-Peierls chain. (a) corresponds an
even segment with two spin-1/2 moments. In this case the ex-
change (1, 2) between S1 and S2 is the same as for the Haldane
gap chain. (b) corresponds to an odd segment with one spin-1/2
moment. (c) corresponds to an even segment with no spin-1/2
moment.

DMRG calculations for open segments, the authors of ref-
erence [24] could obtain a good agreement between the
model and the experiments on Y2BaNi1−xZnxO5 above
4 K. The deviations occurring in the temperature range
[2 K, 4 K] have been attributed to interchain correlations
which play a central role in the model developed here.

It will be fruitful to make a qualitative comparison
with doped spin-Peierls systems, which are closely related
to the doped Haldane gap systems [26]. Non magnetic im-
purities introduced in a spin-Peierls system generate un-
paired spin-1/2 moments (see Fig. 3). Depending on the
parity of the length of the segment and on the dimer-
ization pattern, there can be zero, one or two spin-1/2
moments. If there are two spin-1/2 moments (see Fig. 3a)
the exchange (1) and (2) is the same as for the Haldane
gap chain. To discuss the qualitative physics, we will make
the approximation of including only the segments in Fig-
ure 3a that give rise to two spin-1/2 moments and neglect
the other segments.

2.2 Role of interchain interactions

Interchain interactions can be described by introducing a
correlation length ξ⊥ in the transverse direction. In two
dimensions, the effective low energy Hamiltonian is a sum
over all pairs of spins [26]:

H =
∑
〈i,j〉

Ji,jSi · Sj , (3)
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Fig. 4. Schematic representation of the ground state obtained
from the mean field approach. The even segments are coupled
into non magnetic random dimers. The other spins give rise to
antiferromagnetic long range order.

where the exchange between the spin Si at coordinates
(xi, yi) and the spin Sj at coordinates (xj , yj) is given by

Ji,j = (−)rx+ry∆ exp

−
√(

rx
ξ

)2

+
(
ry
ξ⊥

)2
, (4)

where rx = xi − xj and ry = yi − yj . It has been shown
from the RG approach in 2D that the Hamiltonian defined
by (3) and (4) in two dimensions has a finite randomness
behavior [26]. This indicates the existence of long range
antiferromagnetism. In the present work, we do not ad-
dress directly the model defined by (3) and (4) in 2D. In-
stead we propose that Y2BaNi1−xZnxO5 can be described
by a mean field model in which we introduce a coupling to
a molecular field −hs

∑
i S

z
i . The value of the molecular

field is equal to the strength of antiferromagnetic corre-
lations, which can be obtained from the susceptibility ex-
periments in Section 4. Since we use a mean field model,
we cannot make the distinction between “antiferromag-
netic long range order” and “antiferromagnetic correla-
tions with a finite (but possibly large) correlation length”.
For the sake of simplicity we assume that the staggered
molecular field is uniform. But our approach can be ex-
tended to incorporate a distribution of molecular fields.
The distribution of molecular fields can be calculated in
a self-consistent way by imposing that the exchange field
distribution is identical to the staggered moment distribu-
tion, up to a proportionality factor related to the strength
of interchain correlations.

2.3 Summary of the article

Our strategy will be to solve the cluster RG in the pres-
ence of a molecular field for a model having J2 = 0 (see
Fig. 2). Because this model reduces to a sum of indepen-
dent two-spin Hamiltonians, we call this model a “two-
spin model”. The Hamiltonian is given in Appendix A
(see Eqs. (A.1, A.5)).

The mean field model shows that antiferromagnetism
coexists with random dimers at low temperature (see
Sect. 3) which are due to the even segments coupled an-
tiferromagnetically. This coexistence can be understood
on a simple basis: at low temperature the even segments
are coupled into non magnetic dimers while the odd seg-
ments are coupled into spin-1 objects. Interchain interac-
tions generate antiferromagnetic correlations among the
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Fig. 5. Temperature dependence of the susceptibility of the
two-spin model, with the parameters relevant for Y2BaNiO5:
ξ = 6, ∆ = 100 K, hs = 0.3 K, x = 8%. We have also shown
separately the contribution of even segments (coupled antifer-
romagnetically) and odd segments (coupled ferromagnetically).

spin-1 moments. The spin-1 moments can eventually or-
der antiferromagnetically (see Fig. 4).

3 Nature of the low temperature phase:
coexistence between antiferromagnetism
and random dimers

3.1 Susceptibility of the two-spin model

The exact treatment of the two-spin model is briefly given
in Appendix A. The total susceptibility is obtained by
averaging equation (A.4) over all possible realizations of
disorder, i.e. over all possible bond lengths:

〈〈χ(T )〉〉 =
+∞∑
l=1

P(l)χ(l, T ).

The bond length distribution is P(l) = x(1 − x)l−1 '
x exp (−xl), with x the impurity concentration. The tem-
perature dependence of the susceptibility is shown in Fig-
ure 5. A maximum occurs in the susceptibility when the
temperature is of the order of interchain interactions, be-
low which the susceptibility decreases to zero. As it can be
seen in Figure 5, the contribution of even segments (be-
ing coupled antiferromagnetically) is much smaller than
the contribution of odd segments (being coupled ferromag-
netically). The reason is that even segments tend to form
dimers which do not couple to a uniform magnetic field.
Both types of segments couple to the staggered molecu-
lar field, which is why the susceptibility in Figure 5 has
a maximum when T ' hs and decreases to zero at lower
temperature.
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Fig. 6. Temperature dependence of Tχ(T ) for the two-spin
model coupled to a molecular field. The parameters are identi-
cal to Figure 5. For each doping concentration we have shown
by a dashed line the temperature dependence of the RG suscep-
tibility (11) which does not contain a coupling to the molecular
field.

The temperature dependence of Tχ(T ) is shown in Fig-
ure 6 for three doping concentrations corresponding to the
experiments in Section 4. At high temperature we recover
the Curie constant of free spin-1/2 moments with a con-
centration 2x:

[Tχ(T )]T=∆ = 2x
S(S + 1)

3
=
x

2
·

At low temperature, Tχ(T ) is exponentially small because
of the coupling to the staggered molecular field.

3.2 Renormalization of the two-spin model

Now we implement RG transformations for the two-spin
model coupled to a molecular field hs and having J2 = 0.
At low temperature (T < hs) the spins are either frozen
into dimers, or align antiferromagnetically. The coexis-
tence between the two orders is therefore very natural in
this framework. The detailed calculation is presented in
Appendix B.

3.2.1 Order parameters

The temperature dependence of the two order parameters
is shown in Figure 7 for Y2BaNiO5 and in Figure 8 for
CuGeO3. It is clear that dimer formation is not important
in CuGeO3 while it plays a crucial role in Y2BaNiO5. To
check that this coexistence is not an artifact of the clus-
ter RG, we have made a similar analysis with the direct
diagonalization of the two-spin model (see Appendix A).
Considering and eigenstate of the form x|+,−〉+ y|−,+〉,
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Fig. 7. Temperature dependence of the two order parame-
ters ϕAF(T ) and ϕdim(T ) with the parameters relevant for
Y2BaNiO5 (see Fig. 5). The energy scale corresponding to ran-
dom dimer formation is larger than the energy scale at which
antiferromagnetism appears. The calculation corresponds to
the RG procedure presented in Section 3.2. The parameters
are given in Figure 5.
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Fig. 8. Temperature dependence of the two order parameters
ϕAF(T ) and ϕdim(T ) with the parameters relevant for CuGeO3

(see Fig. 10). Dimer formation plays little role here. The cal-
culation corresponds to the RG procedure presented in sec-
tion 3.2. The parameters are ∆ = 44.7 K, ξ = 10, hs = 0.03
and x = 0.001. The values of hs and x are deduced from the
low doping experiments in reference [17].

we define

ϕAF = x2 − y2 (5)

ϕdim =
1
2

(x− y)2 (6)

as the order parameters associated to antiferromagnetism
and dimer formation. In the presence of a pure dimer or-
dering, one has x = −y = 1/

√
2, leading to ϕAF = 0 and
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Fig. 9. Antiferromagnetic and dimer order parameters with
the parameters relevant for Y2BaNiO5 (see Fig. 5). The calcu-
lation corresponds to a direct diagonalization of the two-spin
Hamiltonian, subject to a temperature-independent staggered
molecular field.
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Fig. 10. Antiferromagnetic and dimer order parameters with
the parameters relevant for CuGeO3. The parameters are
shown in Figure 8.

ϕdim = 1. In the presence of a pure antiferromagnetic or-
dering, one has x = 1 and y = 0, leading to ϕAF = 1 and
ϕdim = 1/2. The qualitative behavior is similar to the RG
treatment (see Figs. 9 and 10), therefore supporting our
proposal that random dimers coexist with antiferromag-
netism in the mean field model relevant for Y2BaNiO5.

3.2.2 RG Susceptibility

The RG susceptibility in the temperature range 2hs <
T < ∆ is obtained as the sum of the contribution of the
spin-1/2 and spin-1 moments that have not been deci-
mated. We note nS(T ) the density of spin-S moments
(number of spin-S moments per unit length). The total

susceptibility reads

χ(T ) =
∑
S

nS(T )
S(S + 1)

3T
· (7)

As far as even segments are concerned, we find (see Ap-
pendix B) n(even)

1/2 (T ) = x (T/∆)xξ, from what we obtain
the susceptibility of even segments:

χeven(T ) =
x

4T

(
T

∆

)xξ
. (8)

As far as odd segments are concerned, we obtain from
Appendix B: n(odd)

1/2 (T ) = x (T/∆)xξ, and n
(odd)
1 (T ) =

x
2

[
1− (T/∆)xξ

]
, from what we deduce

χodd,1/2(T ) =
x

4T

(
T

∆

)xξ
(9)

χodd,1(T ) =
x

3T

[
1−

(
T

∆

)xξ]
. (10)

The total susceptibility is χtot(T ) = χeven(T ) +
χodd,1/2(T ) + χodd,1(T ):

χtot(T ) =
x

3T

[
1 +

1
2

(
T

∆

)xξ]
, (11)

where the temperature T is such that 2hs < T < ∆.
We have presented in Figure 6 a comparison between

the direct diagonalizations and the RG susceptibility of
the two-spin model. We see from this figure that the value
of Tχ(T ) obtained from the cluster-RG is very close to
the exact diagonalizations in the temperature range 2hs <
T < ∆. We can make the following remarks:

(i) In the absence of the staggered molecular field (i.e. in
the absence of interchain couplings) Tχ(T ) tends to a
constant when T → 0. This constant is equal to the
Curie constant of spin-1 moments with a concentra-
tion x/2:

[Tχ(T )]T=0 =
x

2
S(S + 1)

3
=
x

3
· (12)

(ii) In the presence of a uniform staggered molecular
field, the susceptibility is exponentially small at low
temperature:

Tχ‖(T ) ∼ exp
(
−hs
T

)
. (13)

if the applied magnetic field is parallel to the molecular
field. If the applied magnetic field is perpendicular to
the molecular field, the susceptibility tends to a con-
stant:

Tχ(T ) ∼ χ0T. (14)
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Fig. 11. Temperature dependence of the dc-susceptibility of
the four samples (x = 0.00, x = 0.04, x = 0.06, x = 0.08) with
a magnetic field H = 0.1 T. This is a log-log plot.

If the sample is a powder as in the experiments
presented in Section 4, the susceptibility given by
equations (13), (14) should be averaged over all
directions and we obtain

Tχav(T ) ∼ λχ0T, (15)

where λ is smaller than unity.

Therefore a relevant question for experiments is to
determine whether Tχ(T ) tends to a constant (like in
Eq. (12)) or tends to zero (like in Eq. (15)) in the limit
of zero temperature. From the answer to this question we
can determine whether 3D antiferromagnetic correlations
are important in Y2BaNi1−xZnxO5.

4 Experiments

We investigated the very low temperature susceptibility of
the doped Haldane gap compound Y2BaNi1−xZnxO5. We
have performed ac- and dc-susceptibility measurements
with a SQUID magnetometer equipped with a dilution
refrigerator capable of measuring down to 100 mK and in
magnetic fields up to 8 tesla. The samples are the same
as those used in reference [24]. In particular, there is one
undoped sample with x = 0.00 and three samples with a
Zn doping of x = 0.04, x = 0.06 and x = 0.08.

Figure 11 shows the temperature dependence of the dc-
susceptibility in a log-log plot for the four samples where
the low temperature data from 100 mK to 6 K are new,
and the high temperature data from 2.4 K to 300 K cor-
respond to reference [24]. Both measurements were taken
in a static field of 0.1 tesla. As can be seen, the data agree
very well and no adjustments have been made in the over-
lap temperature interval.

c

Fig. 12. 1/χ versus T for x = 0.00, x = 0.04, x = 0.06 and
x = 0.08. The dashed line are linear fits valid in the tem-
perature range [1 K, 10 K]. The fits intercept the T axis at a
negative temperature which is a signature of antiferromagnetic
correlations.

From Figure 12 showing 1/χ(T ) versus T , we conclude
that our experiments suggest the existence of antiferro-
magnetic correlations at very low temperature because the
fits intercept the T axis at a negative temperature Θ.

The susceptibility in the temperature interval [1 K,
10 K] can be more or less described by a Curie-Weiss law

χ(T ) =
C

T +Θ
· (16)

From the insert of Figure 13 showing Θ versus x, we de-
duce the following:

(i) Θ does not extrapolate to 0 when x = 0.00. This is
due to the fact that the pure sample contains already
a certain level of disorder (see Ref. [24]). We can use
x = 0.014 to describe the pure sample (see Fig. 13).

(ii) Θ increases with x which means that the strength of
antiferromagnetic correlations increases with the dop-
ing concentration.

(iii) The Θ versus x variation is similar to Cu1−xZnxGeO3

(see Refs. [17,26]). The similitude between
Cu1−xZnxGeO3 and Y2BaNi1−xZnxO5 is another
indication in favor of the establishment of 3D
antiferromagnetic correlations in Y2BaNi1−xZnxO5.

Let us now improve the analysis of the low temper-
ature susceptibility. We found that the experimental
data in the temperature range [100 mK, 300 K] can be
well described by a sum of two contributions (see Fig. 14):

Tχ(T ) = Tχimp(T ) + TχHald(T ), (17)

where χHald(T ) is independent of doping concentration
and describes the susceptibility associated with the
formation of the Haldane gap at high temperature.



46 The European Physical Journal B

Fig. 13. Magnetic susceptibility versus temperature at low
temperature for x = 0.00, x = 0.04, x = 0.06 and x = 0.08.
The curves have been fitted to the Curie-Weiss law (16) over
the temperature range [1 K, 10 K]. The insert shows how Θ
depends on the doping concentration x. To incorporate the
existence of a finite level of disorder in the undoped sample,
we made the replacement x = 0.00→ x = 0.014.

Fig. 14. Fit of the experimental susceptibility in the tem-
perature range [100 mK, 300 K]. We have shown Tχ(T )
versus T in a log-log plot. The susceptibility in the temper-
ature range [100 mK, 1 K] has been fitted to an exponen-
tial term C3 exp

�
−∆3

T

�
. The Haldane gap contribution (18)

is extremely weak at low temperature. For instance one has
TχHald(T ) = 1.2× 10−6emu K/Ba mol if T = 10 K.

Fig. 15. Temperature dependence of Tχimp(T ). The fits cor-
respond to (20). The insert show how γ depends on the doping
concentration x.

χimp(T ) describes the low temperature susceptibility
associated with the introduction of doping. Following
a suggestion by Souletie et al. [34] we have attempted
to represent TχHald(T ) by the sum of two exponential
contributions

TχHald(T ) = C1 exp(−∆1

T
) + C2 exp(−∆2

T
), (18)

rather than the usual activated behavior
χHald(T ) = AT−1/2 exp (−∆Hald/T ) (19)

based on a quadratic expansion of the magnon disper-
sion relation around the minimum at q = π [35]. The
form (19) of the susceptibility is a good description of
Haldane gap chains at temperatures smaller than
∆Hald/2 [36,37]. At higher temperatures, Souletie
et al. [34] have found that (18) accounts extremely well
for the results of exact diagonalizations and DMRG cal-
culations on finite rings with an even number N of spin-1
Heisenberg spins, extrapolated to the limit N → +∞.
The agreement between these numerical calculations and
Y2BaNi1−xZnxO5 is even quantitative since we found
∆2/∆1 ' 3.8 in Y2BaNi1−xZnxO5, instead of ∆2/∆1 '
3.86 from the numerical calculations, and C2/C1 ' 0.25
instead of C2/C1 ' 0.32. Unlike equation (19), the expres-
sion (18) tends to the Curie law in the high temperature
limit. It is particularly interesting that the expression (18)
reaches a physically sound high temperature limit because
this is in this limit that the Haldane term constitutes most
of the magnetic signal. We took advantage of this situation
to evaluate the Haldane gap term with the data above 1 K
and subtracted the corresponding contribution to extract
an improved estimate of the impurity contribution. The
difference χimp(T ) = χ(T )− χHald(T ) can be interpreted
as the susceptibility of the spin-1/2 moments generated
by the Zn ions. We have shown on Figure 15 the temper-
ature dependence of Tχimp(T ). We verified that the high
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Table 1. Parameters of the best fits of the susceptibility data. Θ and C are the parameters of the Curie-Weiss fit (16) in the
temperature range [1 K, 10 K]. Timp and Cimp are the parameters of the power-law fit (20) of the “impurity” contribution to
the susceptibility in the temperature range [1 K, 300 K]. ∆1, C1, ∆2 and C2 are the parameters of the two-exponential fit of
the Haldane gap susceptibility (see Eq. (18)). Tc and A are the parameters of the fit given by equation (21) in the temperature
range [100 mK, 1 K].

x Θ C Timp Cimp ∆1 C1 ∆2 C2 Tc A

(K) (10−3 eum K (K) (eum K (K) (eum K (K) (eum K (K) (10−3eum

/Ba mol) /Ba mol) /Ba mol) /Ba mol) /Ba mol)

0.00 0.222 6.44 71.6 0.017 534 1.07 138 0.267 0.021 3.20

0.04 0.498 26.0 3.25 0.032 451 0.995 116 0.19 0.046 13.2

0.06 0.677 34.4 3.13 0.040 494 1.01 122 0.207 0.052 15.9

0.08 0.922 41.6 3.71 0.046 486 0.965 120 0.19 0.054 17.2

temperature limit of Tχimp(T ) corresponds approximately
to a concentration 2x of spin-1/2 moments.

To describe the variation of Tχimp(T ) we use two
different expressions in the two temperature intervals
[100 mK, 1 K] and [1 K, 300 K]. The impurity contri-
bution shown in Figure 15 has been fitted by a power law
in the temperature range [1 K, 300 K]:

Tχimp(T ) = Cimp

(
1 +

Timp

T

)−γ
, (20)

where Cimp and Timp are given in Table 1, and γ is shown
on the insert in Figure 15. We have found for the temper-
ature range [100 mK, 1 K] that the experimental data are
better described by a logarithmic temperature dependence
(see Fig. 16):

Tχimp(T ) = A log10

(
T

Tc

)
, (21)

where A and Tc are given in Table 1. Note that in this
temperature range the contribution from the Haldane gap
susceptibility (18) is negligible.

From the two fits given by (20) and (21) we deduce
that Tχ(T ) tends to zero in the limit T → 0. Regarding
the discussion in Section 3.2.2 we deduce that interchain
interactions play an important role at low temperature.
This validates the molecular field approach used in our
theoretical description. Moreover the fit (20) suggests the
existence of a finite Néel temperature Tc. We notice that

(i) The value of Tc (see Tab. 1) is too small to be probed
directly in experiments.

(ii) Tc deduced from the fit (21) is one order of magnitude
smaller than Θ deduced from the Curie-Weiss fit (16).

(iii) Tc increases with x, which is compatible with an inter-
pretation in terms of a Néel temperature.

Finally we also performed ac-susceptibility measure-
ments which are shown in Figure 17 for three differ-
ent frequencies. We have obtained a maximum in χ′(T )
at a temperature T ' 160 mK. The temperature of

Fig. 16. Fit of Tχimp(T ) to the form (21) in the temperature
range [100 mK, 1 K].
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Fig. 17. Temperature dependence of the ac-susceptibility
χ′(T ) with x = 0.08 for frequencies f = 0.11 Hz, f = 1.1 Hz,
f = 11.1 Hz. The temperature of the maximum of χ′(T ) is
almost frequency-independent.
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the maximum in the real part of the susceptibility is
frequency-independent. This indicates that in spite of a
slowing down of the dynamics at very low temperature,
Y2BaNi1−xZnxO5 is not a spin glass at very low temper-
ature. This may be contrasted with the hole doped com-
pound Y2−xCaxBaNiO5 [38] (with 0 ≤ x ≤ 0.2) in which a
spin glass thermodynamic transition has been reported at
Tg = 2− 3 K. The very low temperature ac-susceptibility
of Y2BaNi1−xZnxO5 represented on Figure 17 is reminis-
cent of the dc-susceptibility of the mean field model (see
Fig. 5). We suggest that the very low temperature ac- and
dc-susceptibilities (see Figs. 16 and 17) can be interpreted
in terms of antiferromagnetic correlations at low temper-
ature.

5 Conclusion

To conclude, we have presented a detailed study of an-
tiferromagnetic correlations in Y2BaNi1−xZnxO5. Based
on the quantum chemistry calculation in reference [29],
we have proposed that Y2BaNi1−xZnxO5 can be well de-
scribed by a model in which interchain couplings are
treated in mean field. The ground state of this model
shows a coexistence between random dimers and antifer-
romagnetism. In the presence of the staggered molecular
field, the product Tχ(T ) goes to zero in the limit of zero
temperature.

We have presented very low susceptibility experiments
and shown how to subtract from the total susceptibility
the high energy contribution corresponding to the forma-
tion of the Haldane gap. The product Tχimp(T ) tends to
zero at low temperature. In view of the model, we con-
clude that this behavior is due to interchain correlations.
At very low temperature the product Tχimp(T ) has a log-
arithmic temperature dependence in the temperature in-
terval [100 mK, 1 K]: Tχimp(T ) ' A log10 (T/Tc). If we
take for granted that this scaling is valid at lower temper-
atures we deduce the existence of a finite Néel transition
temperature, which is in agreement with the assumption
made in the mean field model. We have also obtained
a maximum in the temperature dependence of the ac-
susceptibility χ′(T ) which is an indication of the presence
of antiferromagnetic correlations at very low temperature.

An important question left open is to clarify the behav-
ior of 2D and 3D models and determine whether there is an
antiferromagnetic phase transition at a finite temperature.
Using a mean field model we have shown here that there is
a coexistence between dimer formation (being due mainly
to the even segments coupled antiferromagnetically) and
antiferromagnetism (being due mainly to odd segments
coupled ferromagnetically). If interchain interactions are
very small, it is possible that singlets can be formed also
among neighboring chains. These singlets would compete
with 3D antiferromagnetism. An open question is to de-
termine whether 3D antiferromagnetism is stable against
dimer formation even with very small interchain interac-
tions. Answering this question may clarify why Tc (ob-
tained from the fit (21) in the temperature range [100 mK,
1 K]) is one order of magnitude smaller than Θ (obtained

from the Curie-Weiss fit (16) in the temperature range
[1 K, 10 K]).

Appendix A: Exact treatment of the two-spin
model

A.1 Even segments

The Hamiltonian of even segments coupled antiferromag-
netically reads

H = J(l)S1 · S2 − h1S
z
1 + h2S

z
2 , (A.1)

where we included a staggered molecular field hs = (h1 +
h2)/2 and a uniform field hu = (h1 − h2)/2. The uni-
form field is used to calculate the uniform susceptibility.
There are two eigenstates |+,+〉 and |−,−〉 with an en-
ergy E|+,+〉 = J/4 − hu, and E|−,−〉 = J/4 + hu. There
are two other eigenstates |ψε〉 = xε|+,−〉 + yε|−,+〉 cor-
responding to ε = ±1, with an energy

Eε = −J
4

+
ε

2

√
J2 + 4h2

s,

and

xε =

√
1
2
− ε hs/J√

1 + 4h2
s/J

2
, (A.2)

yε = ε

√
1
2

+ ε
hs/J√

1 + 4h2
s/J

2
· (A.3)

The magnetization is given by the thermal average

M(l, T ) =
e−βE|+,+〉 − e−βE|−,−〉

Z(T )
, (A.4)

where the partition function is Z(T ) = Tr exp (−βH),
with β = 1/T the inverse temperature.

A.2 Odd segments

The odd segments are coupled ferromagnetically:

H = −|J(l)|S1 · S2 − h1S
z
1 − h2S

z
2 , (A.5)

where h1 = h2 = hs + hu in sublattice A and h1 = h2 =
−hs+hu in sublattice B. The solution of (A.5) is straight-
forward.

Appendix B: Renormalization of the two-spin
model

We should distinguish between odd segments and even
segments. We use the RG transformations given in Ap-
pendices C and D.
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B.1 Even segments

We start from the Hamiltonian given by equation (A.1)
in which the exchange is antiferromagnetic, and where we
assume that there is no uniform magnetic field. There are
three energy scales in the problem:

(i) The temperature T .
(ii) The exchange gap ∆J = J = ∆ exp (−l/ξ).
(iii) The staggered molecular field gap ∆h = hs.

There are two relevant length scales:

(i) The thermal length ξT for which ∆J = T . One has
ξT = ξ ln (∆/T ).

(ii) The staggered molecular field length for which ∆J =
∆h. One has ξh = ξ ln (∆/hs).

We start the RG at high temperature, i.e. T ∼ ∆, and
decrease the temperature until ξT becomes equal to ξh. All
the pairs of spins such that l < ξT are frozen into dimers.
Hence, the dimer order parameter ϕdim is given by

ϕdim(T ) =
∫ ξT

0

1
2
P(l)dl

=
1
2

[
1−

(
T

∆

)xξ]
, where T > hs.

When the temperature becomes smaller than the stag-
gered molecular field hs, the spins that have not yet been
decimated (i.e. having l > ξh) contribute to the antiferro-
magnetic order parameter:

ϕAF(T ) =
∫ +∞

ξh

1
2
P(l)dl =

1
2

(
hs
∆

)xξ
, where T < hs.

B.2 Odd segments

The odd segments are coupled ferromagnetically, with the
Hamiltonian equation (A.5). At high temperature, the RG
transforms the pairs of spin-1/2 moments having l < ξT
into spin-1 moments, having a renormalized staggered
molecular field equal to h̃s = (h1 + h2)/2 = hs. The den-
sity of spin-1 moment reads

ϕ1(T ) =
∫ ξT

0

1
2
P(l)dl

=
1
2

[
1−

(
T

∆

)xξ]
, where T > 2hs.

These spin-1 moments have a gap ∆h = 2hs. When
T = 2hs, all of the spin-1 moments are frozen antifer-
romagnetically. The antiferromagnetic order parameter
jumps from ϕAF(2hs + 0+) = 0 to

ϕAF(2hs − 0+) =
1
2

[
1−

(
2hs
∆

)xξ]
.

When hs < T < 2hs, the pairs of spin-1/2 moments hav-
ing a length ξ2hs < l < ξT are transformed into spin-1
objects, which are immediately frozen antiferromagneti-
cally. The ant

ϕAF(T ) = ϕAF(2hs − 0+) +
∫ ξT

ξ2hs

1
2
P(l)dl

=
1
2

[
1−

(
T

∆

)xξ]
, where hs < T < 2hs.

When T = hs, the survival spin-1/2 moments are directly
frozen antiferromagnetically. The resulting antiferromag-
netic order parameter is

ϕAF(T ) = ϕAF(hs) +
∫ +∞

ξhs

1
2
P(l)dl =

1
2

, where T < hs.

Appendix C: RG transformations
of ferromagnetic bonds

Let us consider the Hamiltonian

H = −J1,2S1 · S2 − h1S
z
1 − h2S

z
2 . (C.1)

in which the spins S1 and S2 are coupled ferromagneti-
cally. We replace the two spins S1 and S2 by an effective
spin S = S1 + S2 with a Hamiltonian H = −h̃Sz, and
need to calculate the renormalized field h̃. We use two dif-
ferent methods giving the same answer in the ferromag-
netic case: (i) a semi-classical calculation using Holstein-
Primakov bosons; (ii) a quantum mechanical calculation
using Clebsch-Gordon coefficients.

C.1 Holstein-Primakov bosons

We replace the spin operators by their bosonic represen-
tation Sz1 = S1 − a+a, S+

1 =
√

2S1a, S−1 =
√

2S1a
+, and

Sz2 = S2 − b+b, S+
2 =

√
2S2b, S−2 =

√
2S2b

+. The Hamil-
tonian equation (C.1) becomes

H = (−JS2 + h1) a+a+ (−JS1 + h2) b+b

+ J
√
S1S2

(
ab+ + a+b

)
· (C.2)

where we discarded the classical energy contribution. The
Hamiltonian equation (C.2) is diagonalized by the unitary
transformation a = c cos θ + d sin θ, and b = −c sin θ +
d cos θ, where

tan (2θ) = − 2J
√
S1S2

J(S1 − S2) + h1 − h2
·

Expanding the low energy Hamiltonian to lowest order
in h1 and h2 leads to

h̃(S1 + S2) = h1S1 + h2S2. (C.3)
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C.2 Clebsch-Gordan coefficients

We combine the two spins S1 and S2 to form a state of the
type |S1, S2|Sz1 , Sz2〉. The highest weight state is |S, S〉 =
|S1, S2|S1, S2〉, and we need to determine the states |S,M〉
to calculate 〈S,M | − h1S

z
1 − h2S

z
2 |S,M〉.

It is straightforward to show that

〈S, S| − h1S
z
1 − h2S

z
2 |S, S〉 = −h1S1 − h2S2. (C.4)

Identifying this with −h̃S, we obtain the renormalized
magnetic field equation (C.3). One can check that equa-
tion (C.3) is also valid for spin-S states having lower values
of Sz. For instance, one finds

|S, S − 1〉 =

√
S1

S
|S1, S − 2|S1 − 1, S2〉

+

√
S2

S
|S1, S2|S1, S2 − 1〉,

leading to

〈S, S − 1| − h1S
z
1 − h2S

z
2 |S, S − 1〉 =

− S − 1
S

(h1S1 + h2S2) . (C.5)

Equation (C.5) implies directly equation (C.3).
It can also be shown that

|S, S − 2〉 =

√
S1(2S1 − 1)
S(2S − 1)

|S1, S2|S1 − 1, S2〉 (C.6)

+2

√
S1S2

S(2S − 1)
|S1, S2|S1−1, S2 − 1〉 (C.7)

+

√
S2(2S2 − 1)
S(2S − 1)

|S1, S2|S1, S2 − 2〉. (C.8)

We deduce

〈S, S − 2| − h1S
z
1 − h2S

z
2 |S, S − 2〉 =

− S − 2
S

(h1S1 + h2S2) , (C.9)

leading again to equation (C.3).
We are lead to conjecture that

〈S,M | − h1S
z
1 − h2S

z
2 |S,M〉 =

− M

S
(h1S1 + h2S2) (C.10)

for any value of M .

Appendix D: RG transformations
of antiferromagnetic bonds

Let us consider the Hamiltonian

H = J1,2S1 · S2 − h1S
z
1 − h2S

z
2 (D.1)

in which the spins S1 and S2 are coupled antiferromagnet-
ically. We assume that S1 > S2 and look for the effective
Hamiltonian under the form −h̃Sz, with S = S1 − S2.

D.1 Holstein-Primakov bosons

To obtain the RG equation in the semiclassical limit,
we represent the two spins by Holstein-Primokov bosons:
Sz1 = S1 − a+a, S+

1 =
√

2S1a, S−1 =
√

2S1a
+, and

Sz2 = −S2 +b+b, S+
2 =

√
2S2b

+, S−2 =
√

2S2b. The Hamil-
tonian equation (D.1) becomes

H = (JS2 + h1)a+a+ (JS1 − h2)b+b

+ J
√
S1S2(ab+ a+b+), (D.2)

where we retained only the quadratic contributions, and
discarded the classical energy term. The bosonic Hamilto-
nian equation (D.2) is readily diagonalized by the Bogoli-
ubov rotation a = c cosh θ + d+ sinh θ, with

tanh (2θ) = − 2J
√
S1S2

J(S1 + S2) + h1 − h2
·

Expanding the low energy Hamiltonian to lowest order
in h1 and h2 leads to

h̃(S1 − S2) = h1S1 − h2S2, (D.3)

which constitutes the classical renormalization equation.
As we show in Sections D.2 and D.3, the quantum renor-
malization equation does not coincide exactly with the
classical equation.

D.2 Clebsch-Gordan coefficients: coupling of a spin-s
to a spin-1/2

Considering S1 = s > 1/2 and S2 = 1/2, we find

|s− 1/2,M〉 =

√
s+M + 1/2

2s+ 1
|s, 1/2|M + 1/2,−1/2〉

−
√
s−M + 1/2

2s+ 1
|s, 1/2|M − 1/2, 1/2〉,

from what we deduce 〈s − 1/2,M | − h1S
z
1 − h2S

z
2 |s −

1/2,M〉 = −h̃M , with

h̃

(
s+

1
2

)
= h1(s+ 1)− 1

2
h2. (D.4)

This RG equation is clearly not identical to equa-
tion (D.3).

D.3 Clebsch-Gordan coefficients: coupling of a spin-s
to a spin-1

Now let us consider S1 = s > 1 and S2 = 1. Us-
ing standard orthonormalization and recursion techniques,
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we obtain

|s− 1,M〉 = −
√

(s−M)(s−M + 1)
2s(2s+ 1)

|s, 1|M − 1, 1〉

+

√
(s+M)(s−M)

s(2s+ 1)
|s, 1|M, 0〉

−
√

(s+M + 1)(s+M)
2s(2s+ 1)

|s, 1|M + 1,−1〉,

(D.5)

form what we deduce 〈s−1,M |−h1S
z
1−h2S

z
2 |s−1,M〉 =

−h̃M, with the renormalized magnetic field

h̃s = h1(s+ 1)− h2. (D.6)

Comparing equations (D.4) and (D.6), we are lead to con-
jecture that the general renormalization equation is

h̃(S1 − S2 + 1) = h1(S1 + 1)− h2S2 (with S1 > S2).
(D.7)

The quantum RG equation equation (D.7) does not coin-
cide exactly with the classical one (see Eq. (D.3)). Nev-
ertheless, the large-S limit of the quantum RG equa-
tion (D.7) does coincide with the classical equation (D.3).
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